Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2309172, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391035

RESUMO

X-ray circular dichroism, arising from the contrast in X-ray absorption between opposite photon helicities, serves as a spectroscopic tool to measure the magnetization of ferromagnetic materials and identify the handedness of chiral crystals. Antiferromagnets with crystallographic chirality typically lack X-ray magnetic circular dichroism because of time-reversal symmetry, yet exhibit weak X-ray natural circular dichroism. Here, the observation of giant natural circular dichroism in the Ni L3-edge X-ray absorption of Ni3TeO6 is reported, a polar and chiral antiferromagnet with effective time-reversal symmetry. To unravel this intriguing phenomenon, a phenomenological model is proposed that classifies the movement of photons in a chiral crystal within the same symmetry class as that of a magnetic field. The coupling of X-ray polarization with the induced magnetization yields giant X-ray natural circular dichroism, revealing typical ferromagnetic behaviors allowed by the symmetry in an antiferromagnet, i.e., the altermagnetism of Ni3TeO6. The findings provide evidence for the interplay between magnetism and crystal chirality in natural optical activity. Additionally, the first example of a new class of magnetic materials exhibiting circular dichroism is established with time-reversal symmetry.

2.
Nanoscale Horiz ; 9(1): 148-155, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37938857

RESUMO

Since two gap superconductivity was discovered in MgB2, research on multigap superconductors has attracted increasing attention because of its intriguing fundamental physics. In MgB2, the Mg atom donates two electrons to the borophene layer, resulting in a stronger gap from the σ band and a weaker gap from the π bond. First-principles calculations demonstrate that the two gap anisotropic superconductivity strongly enhances the transition temperature of MgB2 in comparison with that given by the isotropic model. In this work, we report a three-band (B-σ, B-π, and La-d) two-gap superconductor LaB2 with very high Tc = 30 K by solving the fully anisotropic Migdal-Eliashberg equation. Because of the σ and π-d hybridization on the Fermi surface, the electron-phonon coupling constant λ = 1.5 is significantly larger than the λ = 0.7 of MgB2. Our work paves a new route to enhance the electron-phonon coupling strength of multigap superconductors with d orbitals. On the other hand, our analysis reveals that LaB2 belongs to the weak topological semimetal category, leading to a possible topological superconductor with the highest Tc to date. Moreover, upon applying pressure and/or doping, the topology is tunable between weak and strong with Tc varying from 15 to 30 K, opening up a flexible platform for manipulating topological superconductors.

3.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836286

RESUMO

Two-dimensional multiferroic (2D) materials have garnered significant attention due to their potential in high-density, low-power multistate storage and spintronics applications. MXenes, a class of 2D transition metal carbides and nitrides, were first discovered in 2011, and have become the focus of research in various disciplines. Our study, utilizing first-principles calculations, examines the lattice structures, and electronic and magnetic properties of nitride MXenes with intrinsic band gaps, including V2NF2, V2NO2, Cr2NF2, Mo2NO2, Mo2NF2, and Mn2NO2. These nitride MXenes exhibit orbital ordering, and in some cases the orbital ordering induces magnetoelastic coupling or magnetoelectric coupling. Most notably, Cr2NF2 is a ferroelastic material with a spiral magnetic ordered phase, and the spiral magnetization propagation vector is coupled with the direction of ferroelastic strain. The ferroelectric phase can exist as an excited state in V2NO2, Cr2NF2, and Mo2NF2, with their magnetic order being coupled with polar displacements through orbital ordering. Our results also suggest that similar magnetoelectric coupling effects persist in the Janus MXenes V8N4O7F, Cr8N4F7O, and Mo8N4F7O. Remarkably, different phases of Mo8N4F7O, characterized by orbital ordering rearrangements, can be switched by applying external strain or an external electric field. Overall, our theoretical findings suggest that nitride MXenes hold promise as 2D multiferroic materials.

4.
Adv Sci (Weinh) ; 10(17): e2300845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132589

RESUMO

Plumbene, with a structure similar to graphene, is expected to possess a strong spin-orbit coupling and thus enhances its superconducting critical temperature (Tc ). In this work, a buckled plumbene-Au Kagome superstructure grown by depositing Au on Pb(111) is investigated. The superconducting gap monitored by temperature-dependent scanning tunneling microscopy/spectroscopy shows that the buckled plumbene-Au Kagome superstructure not only has an enhanced Tc with respect to that of a monolayer Pb but also possesses a higher value than what owned by a bulk Pb substrate. By combining angle-resolved photoemission spectroscopy with density functional theory, the monolayer Au-intercalated low-buckled plumbene sandwiched between the top Au Kagome layer and the bottom Pb(111) substrate is confirmed and the electron-phonon coupling-enhanced superconductivity is revealed. This work demonstrates that a buckled plumbene-Au Kagome superstructure can enhance superconducting Tc and Rashba effect, effectively triggering the novel properties of a plumbene.

5.
Nanoscale Horiz ; 8(2): 297, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36602301

RESUMO

Correction for 'Magnetoconductance modulations due to interlayer tunneling in radial superlattices' by Yu-Jie Zhong et al., Nanoscale Horiz., 2022, 7, 168-173, https://doi.org/10.1039/D1NH00449B.

6.
Nano Lett ; 23(1): 380-388, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382909

RESUMO

Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.

7.
Adv Mater ; 35(9): e2207849, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495592

RESUMO

Nanolamination of GaN and ZnO layers by atomic layer deposition (ALD) is employed to fabricate GaN-ZnO homogenous solid-solution thin films because it offers more precise control of the stoichiometry. By varying the ALD cycle ratios of GaN:ZnO from 5:10 to 10:5, the (GaN)1- x (ZnO)x films with 0.39 ≦ x ≦ 0.79 are obtained. The formation of solid solution is explained based on the atomic stacking and preferred orientation of the layers of GaN and ZnO. However, the growth rates of GaN and ZnO during the lamination process are different from those of pure GaN and ZnO films. It is found that GaN grows faster on ZnO, whereas ZnO grows slower on GaN. The density functional theory (DFT) calculations are performed using a superlattice model for GaN and ZnO laminated layers fabricated by ALD to understand the difference of density of states (DOS) and evaluate the bandgaps for various atomic configurations in the solid-solution films. The band positions are experimentally defined by ultraviolet photoelectron spectroscopy. Significant bandgap reduction of the solid solutions is observed, which can be explained by the DOS from the DFT calculations. Visible-light-driven photocatalytic hydrogen evolution is conducted to confirm the applicability of the solid-solution films.

8.
Nat Nanotechnol ; 17(7): 721-728, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35501377

RESUMO

Electrical manipulation of the valley degree of freedom in transition metal dichalcogenides is central to developing valleytronics. Towards this end, ferromagnetic contacts, such as Ga(Mn)As and permalloy, have been exploited to inject spin-polarized carriers into transition metal dichalcogenides to realize valley-dependent polarization. However, these materials require either a high external magnetic field or complicated epitaxial growth steps, limiting their practical applications. Here we report van der Waals heterostructures based on a monolayer WSe2 and an Fe3GeTe2/hexagonal boron nitride ferromagnetic tunnelling contact that under a bias voltage can effectively inject spin-polarized holes into WSe2, leading to a population imbalance between ±K valleys, as confirmed by density functional theory calculations and helicity-dependent electroluminescence measurements. Under an external magnetic field, we observe that the helicity of electroluminescence flips its sign and exhibits a hysteresis loop in agreement with the magnetic hysteresis loop obtained from reflective magnetic circular dichroism characterizations on Fe3GeTe2. Our results could address key challenges of valleytronics and prove promising for van der Waals magnets for magneto-optoelectronics applications.

9.
Adv Sci (Weinh) ; 9(20): e2201353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35478495

RESUMO

Bismuth telluride-based thermoelectric (TE) materials are historically recognized as the best p-type (ZT = 1.8) TE materials at room temperature. However, the poor performance of n-type (ZT≈1.0) counterparts seriously reduces the efficiency of the device. Such performance imbalance severely impedes its TE applications either in electrical generation or refrigeration. Here, a strategy to boost n-type Bi2 Te2.7 Se0.3 crystals up to ZT = 1.42 near room temperature by a two-stage process is reported, that is, step 1: stabilizing Seebeck coefficient by CuI doping; step 2: boosting power factor (PF) by synergistically optimizing phonon and carrier transport via thermal-driven Cu intercalation in the van der Waals (vdW) gaps. Theoretical ab initio calculations disclose that these intercalated Cu atoms act as modulation doping and contribute conduction electrons of wavefunction spatially separated from the Cu atoms themselves, which simultaneously lead to large carrier concentration and high mobility. As a result, an ultra-high PF ≈63.5 µW cm-1 K-2 at 300 K and a highest average ZT = 1.36 at 300-450 K are realized, which outperform all n-type bismuth telluride materials ever reported. The work offers a new approach to improving n-type layered TE materials.

10.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215007

RESUMO

The topological phase transition and exotic quasiparticles in materials have attracted much attention because of their potential in spintronics and mimic of elementary particles. Especially, great research interest has been paid to search for the Weyl fermions in solid-state physics. By using first-principles calculations, we predict that the multinary semiconductor alloy TlCd2Te4 exhibits threefold fermions and nodal-line fermions, which are protected by the S4 improper rotational symmetry. Moreover, owing to the lack of inversion and mirror symmetries, the threefold fermions split into Weyl fermions when the spin-orbit coupling is included. The chiral charge of Weyl points and the Z2 time-reversal topological invariant are investigated. The topological surface states, spin texture, and electron-phonon coupling analysis are presented. Our study demonstrates TlCd2Te4 as a good platform to understand topological phase transitions as well as possible coexistance of topological Weyl semimetal and superconductivity in one single material.

11.
ACS Nano ; 16(2): 2369-2380, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35099945

RESUMO

To realize the quantum anomalous Hall effect (QAHE) at elevated temperatures, the approach of magnetic proximity effect (MPE) was adopted to break the time-reversal symmetry in the topological insulator (Bi0.3Sb0.7)2Te3 (BST) based heterostructures with a ferrimagnetic insulator europium iron garnet (EuIG) of perpendicular magnetic anisotropy. Here we demonstrate large anomalous Hall resistance (RAHE) exceeding 8 Ω (ρAHE of 3.2 µΩ·cm) at 300 K and sustaining to 400 K in 35 BST/EuIG samples, surpassing the past record of 0.28 Ω (ρAHE of 0.14 µΩ·cm) at 300 K. The large RAHE is attributed to an atomically abrupt, Fe-rich interface between BST and EuIG. Importantly, the gate dependence of the AHE loops shows no sign change with varying chemical potential. This observation is supported by our first-principles calculations via applying a gradient Zeeman field plus a contact potential on BST. Our calculations further demonstrate that the AHE in this heterostructure is attributed to the intrinsic Berry curvature. Furthermore, for gate-biased 4 nm BST on EuIG, a pronounced topological Hall effect-like (THE-like) feature coexisting with AHE is observed at the negative top-gate voltage up to 15 K. Interface tuning with theoretical calculations has realized topologically distinct phenomena in tailored magnetic TI-based heterostructures.

12.
Nanoscale Horiz ; 7(2): 168-173, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34982086

RESUMO

Radial superlattices are nanostructured materials obtained by rolling up thin solid films into spiral-like tubular structures. The formation of these "high-order" superlattices from two-dimensional crystals or ultrathin films is expected to result in a transition of transport characteristics from two-dimensional to one-dimensional. Here, we show that a transport hallmark of radial superlattices is the appearance of magnetoconductance modulations in the presence of externally applied axial magnetic fields. This phenomenon critically relies on electronic interlayer tunneling processes that activate an unconventional Aharonov-Bohm-like effect. Using a combination of density functional theory calculations and low-energy continuum models, we determine the electronic states of a paradigmatic single-material radial superlattice - a two-winding carbon nanoscroll - and indeed show momentum-dependent oscillations of the magnetic states in the axial configuration, which we demonstrate to be entirely due to hopping between the two windings of the spiral-shaped scroll.

13.
ACS Nano ; 15(9): 15085-15095, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34435764

RESUMO

Antimonene is a promising two-dimensional (2D) material that is calculated to have a significant fundamental bandgap usable for advanced applications such as field-effect transistors, photoelectric devices, and the quantum-spin Hall (QSH) state. Herein, we demonstrate a phenomenon termed topological proximity effect, which occurs between a 2D material and a three-dimensional (3D) topological insulator (TI). We provide strong evidence derived from hydrogen etching on Sb2Te3 that large-area and well-ordered antimonene presents a 2D topological state. Delicate analysis with a scanning tunneling microscope of the evolutionary intermediates reveals that hydrogen etching on Sb2Te3 resulted in the formation of a large area of antimonene with a buckled structure. A topological state formed in the antimonene/Sb2Te3 heterostructure was confirmed with angle-resolved photoemission spectra and density-functional theory calculations; in particular, the Dirac point was located almost at the Fermi level. The results reveal that Dirac fermions are indeed realized at the interface of a 2D normal insulator (NI) and a 3D TI as a result of strong hybridization between antimonene and Sb2Te3. Our work demonstrates that the position of the Dirac point and the shape of the Dirac surface state can be tuned by varying the energy position of the NI valence band, which modifies the direction of the spin texture of Sb-BL/Sb2Te3 via varying the Fermi level. This topological phase in 2D-material engineering has generated a paradigm in that the topological proximity effect at the NI/TI interface has been realized, which demonstrates a way to create QSH systems in 2D-material TI heterostructures.

14.
Nanomaterials (Basel) ; 11(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443830

RESUMO

Magnetic two-dimensional (2D) van der Waals materials have attracted tremendous attention because of their high potential in spintronics. In particular, the quantum anomalous Hall (QAH) effect in magnetic 2D layers shows a very promising prospect for hosting Majorana zero modes at the topologically protected edge states in proximity to superconductors. However, the QAH effect has not yet been experimentally realized in monolayer systems to date. In this work, we study the electronic structures and topological properties of the 2D ferromagnetic transition-metal dichalcogenides (TMD) monolayer 1T-VSe2 by first-principles calculations with the Heyd-Scuseria-Ernzerhof (HSE) functional. We find that the spin-orbit coupling (SOC) opens a continuous band gap at the magnetic Weyl-like crossing point hosting the quantum anomalous Hall effect with Chern number C=2. Moreover, we demonstrate the topologically protected edge states and intrinsic (spin) Hall conductivity in this magnetic 2D TMD system. Our results indicate that 1T-VSe2 monolayer serves as a stoichiometric quantum anomalous Hall material.

15.
Sci Rep ; 11(1): 12645, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135371

RESUMO

Using photoemission spectroscopy (PES), we have systematically investigated the behavior of polar organic molecule, chloroaluminum phthalocyanine (ClAlPc), adsorbed in the Cl-down configuration on the Ag(111) substrate at low temperature - 195 °C under UV irradiation with a range of different photon fluxes. Judging from the evolution of photoemission spectral line shapes of molecular energy states, we discovered that the Cl atoms are so robustly anchored at Ag(111) that the impinging photons cannot flip the ClAlPc molecules, but instead they crouch them down due to radiation pressure; we observe that the phthalocyanine (Pc) lobes bend down to interact with Ag atoms on the substrate and induce charge transfer from them. As photon flux is increased, radiation pressure on the Pc plane initiates tunneling of the Cl atom through the molecular plane to turn the adsorption configuration of ClAlPc from Cl-down to an upheld Cl-up configuration, elucidating an optomechanical way of manipulating the dipole direction of polar molecules. Finally, work function measurements provide a distinct signature of the resulting upheld Cl-up configuration as it leads to a large increase in vacuum level (VL), ~ 0.4 eV higher than that of a typical flat-on Cl-up configuration driven by thermal annealing.

16.
Sci Rep ; 11(1): 7668, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828150

RESUMO

We report the experimental observation of and theoretical explanation for the reduction of dopant ions and enhancement of magnetic properties in Ce-doped TiO2 diluted magnetic semiconductors from UV-light irradiation. Substantial increase in Ce3+ concentration and creation of oxygen vacancy defects in the sample due to UV-light irradiation was observed by X-ray and optical methods. Magnetic measurements demonstrate a combination of paramagnetism and ferromagnetism up to room temperatures in all samples. The magnetization of both paramagnetic and ferromagnetic components was observed to be dramatically enhanced in the irradiated sample. First-principle theoretical calculations show that valence holes created by UV irradiation can substantially lower the formation energy of oxygen vacancies. While the electron spin densities for defect states near oxygen vacancies in pure TiO2 are in antiferromagnetic orientation, they are in ferromagnetic orientations in Ce-doped TiO2. Therefore, the ferromagnetically-oriented spin densities near oxygen vacancies created by UV irradiation are the most probable cause for the experimentally observed enhancement of magnetism in the irradiated Ce-doped TiO2.

17.
Phys Chem Chem Phys ; 23(3): 2264-2274, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33443243

RESUMO

Rare earth equiatomic quaternary Heusler (EQH) compounds with chemical formula RXVZ (R = Yb, Lu; X = Fe, Co, Ni; Z = Al, Si) have recently attracted much attention since these materials are easily prepared and they also provide interesting properties for future spintronic applications. In this work, rare Earth-based EQH compounds in three types of structures are theoretically investigated through first-principles calculations based on density functional theory. We find that most of the studied rare Earth EQH compounds exhibit magnetic ground states including ferro-, antiferro-, and ferri-magnetic phases. Owing to the nearly closed shell f orbital in Lu and Yb, the spin magnetic moments mainly come from the 3d transition metal elements. In particular, in the type I structure, a large portion (7 out of 12) of EQH compounds are ferromagnetic half-metals (HMs) with integer magnetic moments ranging from 1 to 3 µB. In the type II structure, YbFeVAl is found to be a rare case of antiferro-magnetic (AFM) half-metal with zero total magnetic moments. Surprisingly, we also discover an unusual magnetic semiconductor LuCoVSi in the type III structure with a total spin magnetic moment of 3.0 µB and an indirect band gap of 0.2 eV. The structural and magnetic stabilities such as formation energy, magnetization energy as well as the mechanical stabilities such as the bulk, shear, and Young's moduli, and Poisson's, and Pugh's ratios of these EQH compounds are also investigated. Most of the studied compounds exhibit mechanical stability under the mechanical stability criteria and show elastic anisotropy. Our work provides guidelines for experimental researchers to synthesize useful materials in future spintronic applications.

18.
Materials (Basel) ; 13(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019662

RESUMO

The rare-earth hexaboride SmB6, known as the topological Kondo insulator, has attracted tremendous attention in recent years. It was revealed that the topological phase of SmB6 is insensitive to the value of on-site Coulomb interactions (Hubbard U), indicating that the topological phase in SmB6 is robust against strong correlations. On the contrary, the isostructural YbB6 displays a sensitivity to the Hubbard U value. As U increases, YbB6 transforms from topological Kondo insulator to trivial insulator, showing the weak robustness of the topological phase of YbB6 against U. Consequently, the dependence of the topological phase on Hubbard U is a crucial issue in the rare-earth hexaboride family. In this work, we investigate the structural and electronic properties of rare-earth hexaboride compounds through first-principles calculations based on density functional theory. By taking the strong correlations into consideration using a wide range of on-site U values, we study the evolution of the topological phases in rare-earth hexaboride (XB6, X = La, Ce, Pr, Nd, Pm, Sm, Eu). Unlike YbB6, the topological trends in all the examples of XB6 studied in this work are insensitive to the U values. We conclude that in addition to the well-known SmB6, PmB6, NdB6 and EuB6 are also topologically nontrivial compounds, whereas LaB6, CeB6 and PrB6 are topologically trivial metal.

19.
iScience ; 23(5): 101065, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361274

RESUMO

Excessive phosphorus in water is the primary culprit for eutrophication, which causes approximately $2.2 billion annual economic loss in the United States. This study demonstrates a phosphate-selective sustainable method by adopting Garcinia subelliptica leaves as a natural bio-template, where MgMn-layered double hydroxide (MgMn-LDH) and graphene oxide (GO) can be grown in situ to obtain L-GO/MgMn-LDH. After calcination, the composite shows a hierarchical porous structure and selective recognition of phosphate, which achieves significantly high and recyclable selective phosphate adsorption capacity and desorption rate of 244.08 mg-P g-1 and 85.8%, respectively. The detail variation of LDHs during calcination has been observed via in situ transmission electron microscope (TEM). Moreover, the roles in facilitating phosphate adsorption and antimicrobial ability of chemical constituents in Garcinia subelliptica leaves, biflavonoids, and triterpenoids have been investigated. These results indicate the proposed bio-templated adsorbent is practical and eco-friendly for phosphorus sustainability in commercial wastewater treatment.

20.
Sci Rep ; 10(1): 7089, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341446

RESUMO

Local density approximation plus on-site Coulomb interaction U electronic structure calculations reveal that layered perovskite oxide Sr2RuO4 exhibits the ferromagnetic (FM) half-metallic ground state, which is nearly degenerate with the antiferromagnetic (AFM) phase with a slightly higher total energy. The nearly degenerate FM/AFM total energies provide a reasonable explanation for the experimentally observed spin-fluctuation. In addition, a dumbbell-shape 4d - t2g recombined dxz - dyz orbital ordering on the Ru sublattice is obtained owing to the on-site Coulomb interaction U associated with the elongated RuO6 octahedron local structure. The discovered orbital ordering is robust against the spin-orbit interaction as well as the surface terminations. Our findings unravel the on-site Coulomb correlation as the driving force of the Ru-4d orbital ordering as well as the inherent magnetic degeneracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...